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Abstract. The scaling properties of coupled optical interface modes in Fibonacci dielectric
superlattices are investigated. In the dielectric continuum approximation, the frequency spectra
are found to have two sets of dual triadic Cantor structures. This duality is also reflected in the
distributions of electric fields. Scaling and multifractal analyses are used to establish that the
frequency spectra are all singular continuous and the eigenstates are critical.

Quasiperiodic structures present us with a new type of system which is intermediate
between periodic and disordered structures. A lot of interesting physical properties in
the quasiperiodic systems have been explored theoretically and experimentally for the last
decade [1–8]. Among them, elementary excitations, such as electron, phonon, plasmon,
and spin wave, in the Fibonacci chains or superlattices have attracted much attention. The
energy spectra and the wave functions are two important aspects to show quasiperiodic
behaviours. To characterize them, many new theoretical methods, especially scaling and
multifractal analyses, have proven successful [9–15].

Optical phonons in layered structures and periodic superlattices have been addressed for
many years [16, 17]. However, only a few studies on the optical phonons in quasiperiodic
structures have been reported [18]. In this paper, we first derive the transfer matrix
expressions and the trace map formulae for the coupled optical interface modes in Fibonacci
dielectric superlattices. Then we present scaling and multifractal analyses for the frequency
spectra and the eigenstates by numerical calculations

A Fibonacci superlattice is a one-dimensional quasiperiodic structure with two building
blocks which can be denoted by L and S. As a structure considered here, each of them is a
bilayer [6, 7] composed of an A layer and a B layer. The B layers in L and S blocks have
the same thicknessd, but the A layers have thicknessdL in L blocks anddS in S blocks,
respectively. Using these two blocks, a Fibonacci dielectric superlattice is formed in terms
of the ruleSj+1 = {Sj , Sj−1}, S1 = L, S2 = LS, wherej is the generation number. For
example,S3 = LSL, S4 = LSLLS, S5 = LSLLSLSL.... A and B are two kinds of dielectric
materials with different dielectric functionsεA and εB . εA and εB are the same as for the
corresponding infinite media and may be frequency dependent. In the electrostatic limit
and dielectric continuum approximation, there is an electrostatic potential8 to satisfy the
Laplace equation∇28(r, t) = 0, and the electric field caused by the vibration of the crystal
polarization is determined byE = −∇8.

Takez as the quasiperiodic direction, and assume that the system is homogeneous and
isotropic in xy planes. Without loss of generality, we consider that only a plane wave
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exp(ikx) propagates along thex direction in the superlattice planes withk as the in-plane
wave vector. If we write8(r, t) = φ(z) exp{i(kx − ωt)}, the Laplace equation becomes(

d2

dz2
− k2

)
φ(z) = 0. (1)

The electrostatic continuum conditions at the interface ofnth and(n + 1)th layers take the
form

φn(z) = φn+1(z) εn

dφn(z)

dz
= εn+1

dφn+1(z)

dz
. (2)

The solutions of equation (1) can be written asφl(z) = glekz + hle−kz in the A layers,
and φl(z) = plekz + qle−kz in the B layers, wherel denotes the block index. If a local
coordinate is taken for each layer and its origin is positioned at the centre of this layer, a
transfer matrix representation(

gl+1

hl+1

)
= Tl+1,l

(
gl

hl

)
(3)

for A layers is obtained, where

Tl+1,l =
(

α ek(dl+1+dl)/2 βek(dl+1−dl)/2

−βe−k(dl+1−dl)/2 γ e−k(dl+1+dl)/2

)
(4)

with dl = dL for an L block anddS for an S block, and

α = coshkd + 1

2

(
εB

εA

+ εA

εB

)
sinhkd

β = 1

2

(
εB

εA

− εA

εB

)
sinhkd (5)

γ = coshkd − 1

2

(
εB

εA

+ εA

εB

)
sinhkd.

Note that all the effects of B layers are included in equation (5). We find that forTl,l+1

there are only three types of unimodular transfer matrixTL,L, TS,L andTL,S . As usual, we
takeM1 = TL,L andM2 = TL,STS,L, and according to the recursion relation [4]

Mj+1 = Mj−1Mj (6)

we can conversely deduce the expression ofM0 = M2M
−1
1 , and subsequently,M−1 =

M1M
−1
0 .

By defining χj = 1
2 Tr Mj , it was shown by Kohmotoet al that I = χ2

j+1 + χ2
j +

χ2
j−1−2χj+1χjχj−1−1 is an invariant which remains constant at every step of the recursive

procedure [4]. In the present system, we can find that

χ−1 = coshk(dL − dS)

χ0 = coshkd coshkdS + 1

2

(
εB

εA

+ εA

εB

)
sinhkd sinhkdS (7)

χ1 = coshkd coshkdL + 1

2

(
εB

εA

+ εA

εB

)
sinhkd sinhkdL

and thus the invariant for the Fibonacci dielectric superlattice is

I = 1

4

(
εB

εA

− εA

εB

)2

sinh2 kd sinh2 k(dL − dS). (8)
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Figure 1. Two sets of dual bands in the Fibonacci dielectric superlattices with generation number
j = 2–5: (a)ω+ band; (b)ω− band.

From equation (6), it is straightforward to demonstrate the well known recursion relation of
a nonlinear trace map [4]

χj+1 = 2χjχj−1 − χj−2. (9)

For example, it is direct to verify thatχ2 = 2χ1χ0 − χ−1. (7) and (9) are quite useful
in the following numerical analyses. In the numerical calculation of the coupled optical
interface modes of Fibonacci dielectric superlattices, the number of Fibonacci generations
can only be taken to be a finite value. So there are two types of boundary condition: one is
the periodic boundary condition, and the other is the free boundary condition. The former,
which is also referred to as a rational approximation, is employed in the present work.
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Figure 2. Scaling relations of the total bandwidthsBj against the Fibonacci numberFj (j = 2–
16) for theω+ bands andω− bands.

The recursion equation for the quasiperiodic structure can be formally written as(
gN+1

hN+1

)
= Mj

(
g1

h1

)
=

(
m11 m12

m21 m22

) (
g1

h1

)
= eiQD

(
g1

h1

)
(10)

where themij (i, j = 1, 2) are all complicated functions of wave vector, thicknesses
and frequency andQ and D are the wavevector and thickness of the whole superlattice,
respectively. Based on (3)–(10), further theoretical analyses of the coupled optical interface
modes can be made. To obtain the concrete numerical results, we choose the dielectric
function of A to be frequency independent, but the one of B to be frequency dependent:
εB(ω) = εB,∞(ω2 − ω2

B,LO)/(ω2 − ω2
B,T O), as for alkali halide or polar semiconductor

materials. The relevant parameters are chosen as the following:εA = 2.1, as the value
of SiO2; εB,∞ = 2.34, εB,0 = 5.9, ωB,T O = 32.01THz andωB,LO = 50.74 THz, which
correspond to the values of NaCl;εC = 1 as the value of vacuum;kdL = 2.0, kdS = 1.0
andkd = 0.5.

If the Fibonacci generation numberj is chosen, then under the rational approximation,
the eigenfrequency equation reads

χj = cosQD. (11)

Some specific cases, likeQD = 0, ±π , correspond to the band edges. The trace map
equation (9) provides us with a powerful tool to calculate the frequency spectra. The
numerical results forj = 2, 3, 4, 5 are shown in figure 1. The results forj = 6–20 are
also obtained, but not displayed here. Being different from the electron, phonon, plasmon
and spin wave [1–6], in the present system, the allowed frequencies form two dual Cantor
structures and the total number of subbands is 2Fj , whereFj is a Fibonacci number which
satisfies the recursion relationFj = Fj−2 + Fj−1, andF0 = F1 = 1. In addition, these two
dual band structures are all nonuniform scaling. For the bandω+, at lower frequencies, there
are larger bands and smaller gaps, while at higher frequencies, the bands are narrower. As
for the bandω−, the case is reversed. The characteristics are closely related to the invariant
I which is qualitatively different from the other elementary excitations [2, 3, 6].
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Figure 3. Multifractal spectraf ∼ α curve ofω− bands.

From the relationship between the total bandwidth and the period of the system,
extended, localized and critical states can be identified for a quasiperiodic structure [7]. In
our Fibonacci dielectric superlattice withFj blocks representing the period of the system,
it is straightforward to evaluate the width of each subband, then sum them over to get the
total bandwidthBj . Figure 2 shows the log–log relation betweenBj and Fj for the two
dual Cantor structures. Clearly, there exists a scaling relation between the total bandwidths
and the Fibonacci number

Bj ∼ F−δ
j

with δ ≈ 0.5. Whenj becomes larger and larger,Bj , that is to say, the Lebesque measure
of the energy band, approaches zero, so all the states are critical. This result stems from the
quasiperiodicity and is essentially the same as those in systems of electrons [9], phonons
[12] and plasmons [13]. However, theω+ andω− bands have almost the same exponential
δ, which is due to the fact that the duality for two bands is strict.

At this stage, we address the multifractality of the spectra. For this process, we need to
calculate the partition function [8]

0(q, τ, {si}, l) =
N∑

i=1

p
q

i

lτi
(12)

under the condition

0(q, τ ) = lim
l→0

0(q, τ, {si}, l) = C (13)

wheresi is the subset with measureli , l 6 li and C is a finite constant. Once the mass
exponentτ(q) is determined, the implicit relationf (α) can be obtained from

α(q) = dτ(q)

dq
f (q) = qα(q) − τ(q). (14)

We here useli to represent the width of theith subband, andpi = 1/Fj in equation (12).
Figure 3 shows the multifractal spectra of the eigenfrequency distribution. To improve the
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Figure 4. The distribution of electric field in a Fibonacci dielectric superlattice withj =
16, QD = 0.5: (a) sixth mode counted from the bottom of theω+ band; (b) sixth mode
counted from the top of theω− band.

convergence, we made use of the trick suggested by Halseyet al [10] by taking013/016 = 1.
We can see from figure 3 that the singularity indexα is distributed between 0.392 06 and
0.800 89, so the spectrum is singular continuous. The fractal dimension of the support is
fmax = f (0.676 90) = D0 = 0.644 28. For simplicity, only the multifractal spectrum for
the ω− band is presented; the result for theω+ band is the same because of the duality.

On the other hand, each of the eigenfrequencies can create a special distribution of
potential, or equivalent field, which represents an eigenstate of the system. As the thickness
of each layer of the superlattice is small, the layer-averaged potential or field is concerned.
In the recursive procedure, the only important issue is to determine what the layer is when
l changes, which we solved by using an algebraic method. We focus on the electric field
in the following, as it relates directly to the long-wave optical vibrations.

From E = −∇8, the distribution of the electric field can be expressed as

|EA
l |2 = 2k2(|gl|2 + |hl|2) sinhkdl/kdl

|EB
l |2 = 2k2(|pl|2 + |ql|2) sinhkd/kd

(15)
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Figure 5. Multifractal spectraf ∼ α curve of the distribution of the electric field in figure 4(b).

where

pl = 1

2

(
1 + εA

εB

)
ek(d+dl)/2 gl + 1

2

(
1 − εA

εB

)
ek(d−dl)/2 hl

ql = 1

2

(
1 − εA

εB

)
e−k(d−dl)/2 gl + 1

2

(
1 + εA

εB

)
e−k(d+dl)/2 hl.

(16)

Under the periodic boundary condition, equation (10) leads to

g1 = −m22 − eiQD

m21
h1. (17)

Once themij (i, j = 1, 2) are recursively obtained,g1 is determined byh1 which is chosen
as a unit. Here we can obtain any set of(gl, hl) by using the transfer matrix.

In terms of (3)–(5) and (15)–(17), we have examined the distribution of electric field
for j = 16 andQD = 0.5. There are 2Fj = 3194 states and they are all critical states,
some appearing to be quasilocalized. This does not seem strange because the invariant
takes a finite value for all eigenfrequencies between 0.4 and 4.5. More interestingly, all the
states are one to one correspondent for two dual bandsω+ andω−, as shown in figure 4.
Figures 4(a) and (b) are adopted from theω+ and ω− bands, respectively. The former is
the sixth mode from the bottom of theω+ band, while the latter is the sixth mode from the
top of theω− band. As far as we know, these dual eigenstates have not been declared in
the study on electrons, phonons, plasmons or spin waves in one-dimensional systems.

Similarly, the multifractal spectra of the distribution of electric field can be calculated.
We choosepi = |Ei |/

∑
i |Ei | and li = l = 1/2Fj . The numerical result off (α) for

the distribution of the electric field in figure 4(b) is shown in figure 5. The range ofα is
betweenαmin = 0.754 29 andαmax = 1.5498. Figure 5, together with figure 4, tells us
that the eigenstates are neither extended nor localized, but are critical, although its fractal
dimension of support isfmax = f (1.0760) = D0 = 1. It is clear that the duality ensures that
the f (α) spectrum for the distribution of the electric field in figure 4(a) closely resembles
figure 5.
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In summary, the scaling properties of coupled optical interface modes in Fibonacci
dielectric superlattices have been investigated for the first time. Except for the general
characteristics of quasiperiodicity, we have found that the frequency spectra as well as
the eigenstates all have dualities, in contrast to other elementary excitations in Fibonacci
structures so far studied. These dualities have obvious impact on the scaling and multifractal
behaviours of the frequency spectra and the eigenstates. The origin of these dualities is
believed to be the dielectric properties of the alkali halide or polar semiconductor materials
used to compose the Fibonacci superlattices.
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